

M.I.E.T. ENGINEERING COLLEGE

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai)
UG - CSE, EEE & MECH Programs Accredited by NBA, New Delhi
Accredited with 'A+' grade by NAAC
An ISO 9001:2015 Certified Institution
Recognized by UGC under section 2(f) & 12(B) of UGC Act, 1956
Trichy – Pudukkottai Road, Tiruchirappalli – 620 007. Phone:0431-2660 303
Website:www.miet.edu, E-mail:principalengg@miet.edu, contact@miet.edu

1.3.2: Number of course that include experiential learning through project work/field work/internship during last year

Dept: M.E. VLSI Design Academic Year-2023-2024

Sl.No	Description	Page No.		
1.	Mapped Subject List	2		
2	Project Work Details	3-6		

PRINCIPAL

M.I.E.T. ENGINEERING COLLEGE
GUNDUR, TIRUCHIRAPALLI - 620 00/2

INSTITUTIONS Since 1984

M.I.E.T. ENGINEERING COLLEGE

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai)
UG - CSE, EEE & MECH Programs Accredited by NBA, New Delhi
Accredited with 'A+' grade by NAAC
An ISO 9001:2015 Certified Institution
Recognized by UGC under section 2(f) & 12(B) of UGC Act, 1956
Trichy – Pudukkottai Road, Tiruchirappalli – 620 007. Phone:0431-2660 303
Website:www.miet.edu, E-mail:principalengg@miet.edu, contact@miet.edu

1.3.2: Number of courses that include experiential learning through project work/field work/internship during last year

Dept: M.E. VLSI Design

Academic Year-2023-2024

Sl.No.	Name of the Course	Course Code	Program Code	Program Offering	Project Work	Field Work	Internship
1	Advanced Digital System Design	AP5151	419	M.E-VLSI Design	✓		✓
2	CMOS Digital VLSI Design	VL5101	419	M.E-VLSI Design	✓		
3	DSP Integrated Circuits	VL5191	419	M.E-VLSI Design	✓		√
4	CAD for VLSI Circuits	VL5102	419	M.E-VLSI Design	✓		
5	Analog IC Design	VL5103	419	M.E-VLSI Design	✓		✓
6	Testing of VLSI Circuits	VL5201	419	M.E-VLSI Design	✓		
7	Low Power VLSI Design	VL5202	419	M.E-VLSI Design	✓		
8	Digital Image Processing	AP5292	419	M.E-VLSI Design	✓		✓

DESIGN AND IMPLEMENTATION OF HAMMING CODE WITH TRIPLICATION ERROR CORRECTION USING XILINX

PHASE II REPORT

Submitted by

SIMRAN A

in partial fulfillment for the award of the degree of

MASTER OF ENGINEERING IN VLSI DESIGN

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING ANNA UNIVERSITY, CHENNAI

AUGUST - 2024

M.I.E.T. ENGINEERING COLLEGE GUNDUR, TIRUCHIRAPALLI - 520 007.

ANNA UNIVERSITY, CHENNAI

BONAFIDE CERTIFICATE

Certified that this Report titled "DESIGN AND IMPLEMENTATION OF HAMMING CODE WITH TRIPLICATION ERROR CORRECTION USING XILINX" is the bonafide work of SIMRAN A (812422419001) who carried out the work under my supervision. Certified further that to the best of my knowledge the work reported here in does not form part of any other thesis or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other candidate.

SIGNATURE

Dr.U.Suresh Kumar, M.Tech., Ph.D.,

Head of the Department

Electronics and Communication

Engineering.

M.I.E.T. Engineering College

Tiruchirapalli-620007

SIGNATURE

Ms.P.Delphine Mary, M.E.,

Assistant Professor

Electronics and Communication

Engineering.

M.I.E.T. Engineering College

Tiruchirapalli-620007.

Submitted for the project thesis viva-voce held on: 16/08/2014

INTERNAL EXAMINER

PRINCIPAL
M.I.E.T. ENGINEERING COLLEGE
GUNDUR, TIRUCHIRAPALLI - 520 007.

M. Surlar Pookah Blojib /8/24 EXTERNAL EXAMINER

ABSTRACT

Present energy efficient error control code MBRBEC that can correct any type of error patterns including random errors, burst errors and combination of random and burst errors that count up to five and simultaneously avoids crosstalk. The proposed MBRBEC encoder uses SEC–DED extended Hamming code (39,32) to encode the initial message bits. Triplication error correction scheme is one of the standard error correction schemes used in communication system to correct errors. We propose triplication error correction scheme to correct the errors in on chip interconnection link. Using triplication error correction scheme, each of the encoded message bit is triplicated. Thus if the initial SEC–DED extended Hamming code is (n,l), where n is the encoded message and l is the original message, then the final number of bits in the triplication message is 3n. The triplication of the message bit is used to correct the errors and simultaneously avoids crosstalk.

PRINCIPAL
M.I.E.T. ENGINEERING COLLEGE
ISHNUIR TRUCHRAPALL, 570,087

CHAPTER 9

CONCLUSION

9.1 CONCLUSION

The proposed MBRBEC encoder uses SEC-DED extended Hamming code (39,32) to encode the initial message bits. In this paper, we have seen how to use an even parity check method for any sequence of information and we have shown it for the 7-bit information signal. It speeds up the communication as we can encode the total information as a whole and send as one, there is no need for splitting. By using the same parity method at the destination we can successfully recover the original information sequence. We can also detect the errors by using no error, single error, and double error method. We have implemented the hamming code in VHDL and DSCH tool. The hamming code is widely used in computing memory, data compression & other application of telecommunication.

PRINCIPAL
M.I.E.T. ENGINEERING COLLEGE
GUNDUR, TIRUCHIRAPALLI - 528 007.